Malignant Mesothelioma
State of the Art

Paul Baas
The Netherlands Cancer Institute

August 12, 2011, Carlsbad, CA
Summary

- Diagnosis; epithelial type subdivided
 - Pleiomorphic vs other

- Staging:
 - IASLC-IMIG initiative
 - Clinical vs. surgical staging

- Treatment issues
 - Chemotherapy: maintenance and 2nd line Rx
 - Surgery: EPP vs. P/D
 - Radiation: IMRT and hybrid techniques

- Future plans......
Etiology of MPM

- Asbestos- “Blue” and “White” Fibers- 70-80% found in tissues
- Persistent stimulation of tissue repair program
- Familial occurrence in Turkey

Epidemiology

- Europe: incidence will increase and peak between 2015 and 2020
- Median latency period to clinical manifestation is over 40 years
- Asbestos production and use is still increasing (developing world)
- Genetic susceptibility:
 - frequent inactivation of tumor suppressor genes include \(p16^{\text{INK4A}} / p14^{\text{ARF}} \) and NF2
Diagnosis

• Cytology vs Histology
 ▫ Thoracentesis
 Confirmatory in 35-40%
 ▫ Abrams Needle biopsy
 confirmatory in 40-50%
 ▫ Thoracoscopy 94-98%
 1-2 x 5mm ports-
 NO FROZEN SECTION
 DIAGNOSIS

Pathology

- Epithelial
 - Pleiomorphic
 - Tubulopapillary
 - Epitheliod
 - Glandular
 - Large Cell (giant cell)
 - Small Cell
 - Adenoid cystic
 - Signet ring

- Mixed Epithelial-Sarcomatous (Biphasic)

- Sarcomatoid (Fibrous, Sarcomatous, Mesenchymal)

- Transitional

- Desmoplastic

- Localized Fibrous Mesothelioma

Slide from W. Travis, MSKCC

Semin Thorac Cardiovasc Surg 2009
Staging

• IMIG 2003 staging system

• AJJC staging system 2010

• Staging involves
 • thoracoscopy
 • often mediastinoscopy

• ~2012 planned new staging system IMIG/IASLC
White light vs PpIX fluorescence
The Evolution of Therapy for MPM

- Biopsy and palliative care
- Biopsy and some sort of surgery
- Biopsy and more radical surgery
- Biopsy and chemotherapy without surgery
- Biopsy and novel intraoperative therapies
- Biopsy and “better” chemotherapies
- Biopsy, radical surgery, and radiotherapy
- Biopsy, induction therapy, surgery and postoperative radiation therapy

“stolen” from H. Pass, ILCC Kona 2009
Chemotherapy
Phase III studies in 1st line

<table>
<thead>
<tr>
<th>Therapy</th>
<th># patients</th>
<th>MST</th>
<th>1 yr surv</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS01 ASC</td>
<td>136</td>
<td>7.6</td>
<td></td>
<td>0.32</td>
</tr>
<tr>
<td>MVP/Vinorelbine</td>
<td>273</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vogelzang</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisplatin</td>
<td>222</td>
<td>9.3</td>
<td>38%</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Pemetrexed/Cis</td>
<td>226</td>
<td>12.3</td>
<td>52%</td>
<td></td>
</tr>
<tr>
<td>EORTC</td>
<td></td>
<td></td>
<td></td>
<td>0.046</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>124</td>
<td>8.8</td>
<td>39.4%</td>
<td></td>
</tr>
<tr>
<td>Raltitrexed/Cis</td>
<td>125</td>
<td>11.2</td>
<td>45.5%</td>
<td></td>
</tr>
</tbody>
</table>

M. Muers Lancet 2008; Vogelzang JCO 2003; van Meerbeeck JCO 2005
Maintenance therapy

- Maintenance therapy with Thalidomide: negative

TTP

HR = 1.0 (0.7 - 1.2), p=0.71

OS

HR = 1.2 (0.9 - 1.6), p=0.30

P. Baas, abstract 7006, pASCO 2011
Second line therapy

- Retreatment with 1th line regimen (ERS/ESTS 2010)
- Phase III study Vorinostat vs. Placebo (ESMO 2011)

Objectives: overall survival, tumor response (RECIST), PFS, pulmonary function, patient-reported outcomes, safety

Patients with epithelial, sarcomatoid, or mixed histology malignant pleural mesothelioma which has progressed or relapsed following treatment with pemetrexed and either cisplatin or carboplatin

Screen

Randomization 1:1

Vorinostat 300 mg bid + best supportive care

‘on’ treatment – 3 days
‘off’ treatment – 4 days

n=660, inclusion closed, data expected Sept 2011
Surgery
Surgical treatment: which to choose?

Extra pleural pneumonectomy

Pleurectomy/Decortication
EPP treatment

- Is a R1 resection
- Mortality rate <5%
- Morbidity rate ~65%

Choice of
- neo-adjuvant chemotherapy
- postoperative RT
- trimodality
P/D treatment

- Tumor reduction R1-2
- Mortality <3%
- Morbidity ~40%
- Palliative treatment

3 Institutions MSKCC, Karmanos, NYU
1990-2006, 663 pts
Retrospective analysis

![Survival by Procedure](image)

TABLE 2. Site of first recurrence after extrapleural pneumonectomy versus pleurectomy/decortication

<table>
<thead>
<tr>
<th>Site of Recurrence</th>
<th>EPP (n = 219) n (%)</th>
<th>P/D (n = 133) n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local recurrences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipsilateral chest</td>
<td>73 (33%)</td>
<td>86 (65%)</td>
</tr>
<tr>
<td>Pericardium</td>
<td>5 (2%)</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Distant recurrences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contralateral lung/pleura</td>
<td>146 (66%)</td>
<td>47 (35%)</td>
</tr>
<tr>
<td>Peritoneum</td>
<td>49 (22%)</td>
<td>14 (11%)</td>
</tr>
<tr>
<td>Peritoneum + chest</td>
<td>57 (26%)</td>
<td>24 (18%)</td>
</tr>
<tr>
<td>Abdominal viscera</td>
<td>17 (8%)</td>
<td>1</td>
</tr>
<tr>
<td>Bone</td>
<td>12 (5%)</td>
<td>4 (3%)</td>
</tr>
<tr>
<td>Brain</td>
<td>7 (3%)</td>
<td>-</td>
</tr>
<tr>
<td>Cutaneous (distant)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>2 (2%)</td>
</tr>
</tbody>
</table>

EPP, Extrapleural pneumonectomy; *P/D,* pleurectomy/decortication.
MARS study

257 patients screened

- **Patients Registered**
 - N = 112
 - (57 Registered Patients Screened Prior to Therapy)

- **Randomisation**
 - N = 50

- **Allocated to EPP Surgery (With Radical Radiotherapy)**
 - N = 24

- **Allocated to No EPP Surgery**
 - N = 26

- **Registration Phase Not Completed**
 - 55
 - Disease Progression = 27
 - Patient Withdrawal = 18
 - Inoperable = 5
 - Other = 4
 - Died = 1

- **Reviewed by MDT**
 - 57
 - Excluded: Disease Progression / Deemed Inoperable = 6
 - Patient Withdrawal = 1

19 treated with EPP

T. Treasure, Lancet Oncology July 2011, WCLC, 2011
MARS: conclusions

group died perioperatively after receiving EPP off trial in a non-MARS centre. The hazard ratio [HR] for overall survival between the EPP and no EPP groups was 1.90 (95% CI 0.92–3.93; exact p=0.082), and after adjustment for sex, histological subtype, stage, and age at randomisation the HR was 2.75 (1.21–6.26; p=0.016). Median survival was 14.4 months (5.3–18.7) for the EPP group and 19.5 months (13.4 to time not yet reached) for the no EPP group.

Interpretation In view of the high morbidity associated with EPP in this trial and in other non-randomised studies a larger study is not feasible. These data, although limited, suggest that radical surgery in the form of EPP within trimodal therapy offers no benefit and possibly harms patients.

But:

Induction treatment: not well defined, some patients were removed from the study for unclear reasons

Surgery: 19 procedures in 12 centers….

Statistics: incomplete # of patients; conclusions made are not supported
Radiation therapy
Radiotherapy in MPM

- **Conventional RT**
 - Prophylactic to entry ports
 - Palliative for pain
 - As part of MMT
 - No real proof of efficacy
 - Good indication
 - Difficult because of dose constraints

- **Intensity Modulated RT**
 - As part of MMT after EPP
 - As part of MMT after P/D
 - Chance of grade 5 toxicity
 - Promising approach

O’Rourke 2005; Allen 2008; Zauderer WCLC 2011
IMRT

Conventional
Future plans in MPM

• To improve staging and pathology by building DB

• To perform small phase II studies with TR

• Emphasis on epigenetic/targeted drugs
 ▫ In 1th line together with CT
 ▫ In 2nd line alone or in combination

• To design studies with P/D in MMT
Thank you for your attention!