Integrating the New with the Old – Recent Advances in Adjuvant Systemic Treatment Strategies for Breast Cancer

Kathy S. Albain, M.D., FACP
Professor of Medicine
Loyola University Chicago Stritch School of Medicine
Cardinal Bernardin Cancer Center

Selected systemic therapy results from San Antonio 2010, St. Gallen 2011, ASCO 2011, and the Oxford Overview for early stage disease

THEMES

• Targeting therapy to subsets defined by biology – standard pathologic criteria and multigene assays
• Neoadjuvant models – 2010-11 advances and controversy
• Status of the “new paradigm” of second generation neoadjuvant consortia studies
• Presurgical window model
• Our greatest challenge

Selected Adjuvant Therapy Clinical Trials 2010-2011 – What’s New from the Oxford Overview and Individual Trial Updates

EBCTCG Anthracyclines vs No Chemo

EBCTCG Anthracyclines vs Anthracyclines

EBCTCG Taxane/Anthra vs Anthracyclines

Postmenopausal, Node+, ER+

S8814 (INT 0100) Disease-Free Survival by Randomized Treatment Group

Significantly different, P<0.05 by log-rank test

Years from Registration

Disease-Free Survival (%)

N at risk

Treatment Group

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Event-free Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAF (586)</td>
<td>10-year DFS: 60% (64%, 56%)</td>
</tr>
<tr>
<td>CAF + T (550)</td>
<td>10-year DFS: 60% (64%, 56%)</td>
</tr>
<tr>
<td>T (361)</td>
<td>10-year DFS: 30% (34%, 26%)</td>
</tr>
</tbody>
</table>

EBCTCG chemotherapy update, 2010-2011

Not for publication or citation, manuscript in preparation
Subgroup Analyses of DFS among Patients with Central Pathology Review: No Benefit to TAC if HER2+ (any ER)

Targeting Therapy to Subsets Defined by Biology – St. Gallen 2011, Standard Pathologic Criteria and Multigene Assays

Breast Cancer Subtypes

PAM50 Intrinsic Subtypes Present and Clinically Significant for Prognosis within both ER+ and ER- Tumors, with Heterogeneity in HER2+(clinical) Group (N0, no systemic adjuvant treatment)
St. Gallen 2011: “Shorthand” Determination of Breast Cancer Subtypes

Intrinsic Subtype	Surrogate Definition
Luminal A | ER and/or PgR(+) and HER2(-)
Luminal B1 | ER and/or PgR(+), HER2(-) Ki67 low (<14%)
Luminal B2 | ER and/or PgR(+), HER2(-) Ki67 high
HER2 over-expression | ER and/or PgR(-), HER2(+) basal-like

<table>
<thead>
<tr>
<th>'Subtype'</th>
<th>Type of therapy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminal A</td>
<td>Endocrine therapy alone</td>
<td>Few require cytotoxic (e.g. high nodal status).</td>
</tr>
<tr>
<td>Luminal B (HER2 negative)</td>
<td>Cytotoxics + endocrine therapy</td>
<td>Inclusion and type of cytotoxic may depend on level of endocrine expression, perceived risk and patient preference.</td>
</tr>
<tr>
<td>Luminal B (HER2 positive)</td>
<td>Cytotoxics + anti-HER2</td>
<td>No data are available to support the omission of cytotoxic in this group.</td>
</tr>
<tr>
<td>HER2 positive (non luminal)</td>
<td>Cytotoxics + anti-HER2</td>
<td>Patients at very low risk may be observed without treatment.</td>
</tr>
<tr>
<td>Triple negative (ductal)</td>
<td>Cytotoxics</td>
<td>Lacks cyclin D1 overexpression.</td>
</tr>
<tr>
<td>Special histological types **</td>
<td>Endocrine therapy + cytotoxics</td>
<td>Medullary and apocrine carcinomas may not require any adjuvant cytotoxic (if node negative).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>'Subtype'</th>
<th>Type of therapy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminal A</td>
<td>Endocrine therapy alone</td>
<td>Few require cytotoxic (e.g. high nodal status).</td>
</tr>
<tr>
<td>Luminal B (HER2 negative)</td>
<td>Cytotoxics + endocrine therapy</td>
<td>Inclusion and type of cytotoxic may depend on level of endocrine expression, perceived risk and patient preference.</td>
</tr>
<tr>
<td>Luminal B (HER2 positive)</td>
<td>Cytotoxics + anti-HER2</td>
<td>No data are available to support the omission of cytotoxic in this group.</td>
</tr>
<tr>
<td>HER2 positive (non luminal)</td>
<td>Cytotoxics + anti-HER2</td>
<td>Patients at very low risk may be observed without treatment.</td>
</tr>
<tr>
<td>Triple negative (ductal)</td>
<td>Cytotoxics</td>
<td>Lacks cyclin D1 overexpression.</td>
</tr>
<tr>
<td>Special histological types **</td>
<td>Endocrine therapy + cytotoxics</td>
<td>Medullary and apocrine carcinomas may not require any adjuvant cytotoxic (if node negative).</td>
</tr>
</tbody>
</table>

S8814 CAFT vs T Node Positive Breast Cancer Specific Survival by RS

Interaction p = 0.021
S1007 “RxPONDER” Launched January, 2011

(Medical Oncology Investigators: Gonzalez-Angulo A-M, PI; Hortobagyi G; Albain K)

NSABP B-47

Evaluating Trastuzumab Efficacy across Low HER2 Levels

New Data Forthcoming from NSABP

- HER2-trastuzumab interaction is modulated by ER level
- A 10 gene-based predictive model being validated to identify who does not benefit from trastuzumab
- HER2 negative patients (especially triple negative) may benefit from trastuzumab

Presented by S. Paik in closed session, not yet public domain

ADJUVANT CHEMOTHERAPY – Improving on Anthracycline Benefit by “Metronomic” Schedule?

S0221: Updated Interim Analysis: Anthracycline Question

Disease-Free Survival by Delivery of AC

- 5-year DFS: AC weekly 79% vs. AC q 2 wk 82%
- HR = 1.15 (95% CI 0.95 - 1.41) AC weekly vs. AC q 2 wk

S0221: Revised Schema for Remaining 534 Patients

- Desorubicin 60 mg/m2 Cyclophosphamide 600 mg/m2
 Peg-filgrastim q 2 weeks x 4
- Paclitaxel 175 mg/m2 Peg-filgrastim
 q 2 wks x 6

- Desorubicin 60 mg/m2 Cyclophosphamide 600 mg/m2
 Peg-filgrastim q 2 weeks x 4
- Paclitaxel 80 mg/m2 Weekly x 12
On Abandoning Adjuvant Anthracyclines?

Time Trends in Type of Chemotherapy: Medicare Cohort: Patients 66+ (N=5511)

Time Trends in Type of Chemotherapy: Private Insurance Cohort: Patients <65 (N=30,658)

Insights

- Use of anthracycline-based chemotherapy has fallen dramatically
- Due to “TC enthusiasm”
- Will we see rise in BC mortality down the road?
- See thoughtful and comprehensive review of this topic by Dr. I. Craig Henderson in Oncology, February 2011

3 New Studies on More Adjuvant Chemotherapy – Can We Add to the A-C-T Backbone?

FinXX Overall Survival

HR = 0.73 (95% CI: 0.52 – 1.04)

P = 0.080
Conclusions “Addition” Trials

- Toxicities not insignificant when 4th drug added
- Exploratory analyses in 2 studies showed benefit to adjuvant capecitabine in triple negative
- No data to support adding 4th drug to A/C/T backbone in clinical practice
- Could inclusion of patients with indolent, ER+ disease mask a stronger signal for the additional drug?
NSABP B-40

Pathologic Complete Responses (Breast and Nodes)

- **Endpoints:** pCR, cCR, DFS, gene expression patterns.

- **Operable Breast Cancer:**
 - Tissue for Biomarkers:
 - EC
 - EC+Bev
 - R
 - Operable
 - Surgery
 - +/- Bev

- **Summary Bevacizumab Trials:**
 - Not Ready for Clinical Use
 - Disappointing results overall in 2 trials to date, with discordant results in subsets
 - Impact on OS and DFS unknown
 - Await long-term follow-up of these 2 trials, plus others recently completed/in progress (BETH, BEATRICE, SWOG, E5103, B-46)
 - Need biomarkers to tailor therapy
Promise and Controversies Regarding the Neoadjuvant Approach

- Can rapidly determine tumor response using pCR as the primary endpoint
- Patients who achieve a pCR have better outcomes
- However, in large phase III trials in “all comers” (unselected for a target), regimens with higher pCR rates did not achieve better overall DFS and OS, the gold standards for FDA drug approval
- Need to target new neoadjuvant strategies to biologic subsets that otherwise would not have achieved a pCR without the new agent (eg: the NOAH trial – overall survival predicted by pCR)

NOAH Trial: Preoperative Chemo +/- Trastuzumab for LABC

Path CR Breast/Nodes

<table>
<thead>
<tr>
<th>Chemo + trast</th>
<th>Chemo only</th>
</tr>
</thead>
<tbody>
<tr>
<td>38%</td>
<td>19%</td>
</tr>
</tbody>
</table>

Gianni L, et al; Lancet 2010

Anti-HER2 therapies: single (a, b, c, e) or dual (a+b, a+e, b+c) blockade

Three New Neoadjuvant Trials HER2+
Presented at SABCS 2010

NeoSphere: pCR Rates Doubled by Dual HER2 Blockade plus Chemotherapy

<table>
<thead>
<tr>
<th></th>
<th>Trast – Docetaxel</th>
<th>Pertuz - Docetaxel</th>
<th>Trast - Pertuz</th>
<th>Trast - Pertuz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT (Overall)</td>
<td>29%</td>
<td>24%</td>
<td>46%</td>
<td>17%</td>
</tr>
<tr>
<td>ER-</td>
<td>37%</td>
<td>30%</td>
<td>63%</td>
<td>27%</td>
</tr>
<tr>
<td>ER+</td>
<td>20%</td>
<td>17%</td>
<td>26%</td>
<td>6%</td>
</tr>
</tbody>
</table>

NeoSphere: pCR Rates Intriguing in Non-Chemotherapy Arm, Especially ER-
Pathologic Response in NeoALTTO
Best if Dual Blockade plus Paclitaxel

<table>
<thead>
<tr>
<th></th>
<th>Path CR (breast only)</th>
<th>Path CR (breast and LN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lapatinib + Paclitaxel</td>
<td>25%</td>
<td>20%</td>
</tr>
<tr>
<td>Trastuzumab + paclitaxel</td>
<td>29%</td>
<td>28%</td>
</tr>
<tr>
<td>Trast + Lap + paclitaxel</td>
<td>51%</td>
<td>47%</td>
</tr>
</tbody>
</table>

Lapatinib + Paclitaxel

Trastuzumab + paclitaxel

Trast + Lap + paclitaxel

Baselga, et al. PSABCS 2010

Inability to give planned doses of lapatinib ~35% in both studies

Neoadjuvant HER2+
ASCO 2011

Guarneri, V (Cher-Lob)
Abstract 507

Holmes, FA (US Oncology)
Abstract 506

CT: wP x 12 → FEC x 4
CT: FEC x 4 → wP x 12

R + T + L (1000-1500)
R + T + L (1500-2000)

24wks
26wks

N=121/115 (recruited/analyzed)
N=100/78 (recruited/analyzed)

Efficacy
(pCR = ypT0/is ypN0)

Guarneri, V Holmes, FA

TBCRC 006: Neoadjuvant Lapatinib & Trastuzumab Without Chemotherapy

Lapatinib (1000 mg/day)

Trastuzumab (4 mg/kg load, 2 mg/kg qw)

(Endocrine Therapy Added if ER++)

Bx

Weeks

n=66 recruited /61 analyzed

pCR ER(-) 46% ER(+) 21%

Chang J, ASCO 2011, Abst. 505

Current Status of a “New Paradigm” of Second Generation Neoadjuvant Consortia Studies which “Build In” Prospective Translational Biologic Questions – NeoBIG and I-SPY2

Guarneri, V et al. ASCO 2011 Abst. 507
Holmes, FA et al. ASCO 2011 Abst. 506

Slide courtesy G. Von Minckwitz
NEO-ALTTO (reported SABCS 2010)

450 women with HER2 positive BC (> 2cm)

ALTTO Met accrual goals Spring, 2011

VALIDATION

Surogate of long-term efficacy

Biomarkers of efficacy/resistance

I-SPY2 TRIAL

OPENED FOR ACCRUAL IN 2010

Summary of I-SPY2 Study Plan

<table>
<thead>
<tr>
<th>Agent</th>
<th>Target</th>
<th>Agent Chaperone</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figitumubum* (CP-751,071)</td>
<td>IGF1R Inhibitor</td>
<td>Dr. Doug Yee</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>Neratinib (HKI-272)</td>
<td>Pan ErbB Inhibitor</td>
<td>Dr. John Park</td>
<td>University of California, San Francisco</td>
</tr>
<tr>
<td>ABT-888</td>
<td>PARP Inhibitor</td>
<td>Dr. Hope Rugo</td>
<td>University of California, San Francisco</td>
</tr>
<tr>
<td>AMG 386</td>
<td>Angiogenesis Inhibitor</td>
<td>Dr. Kathy Albin</td>
<td>Loyola University</td>
</tr>
</tbody>
</table>

* Figitumubum was just withdrawn and will not be available for randomization.

CHALLENGES

- Efficient test of multiple promising new agents
- Maintain standard curative therapy... or replace entirely by new agents at some point in the trial
- Identify who can avoid chemotherapy altogether
- Shrinking eligible patient pool due to frequency of the target as well as competing trials with exciting new therapies for one target, and many companies making the “same” drug/target
Use of the Presurgical Window Model to Screen New Agent Activity

Presurgical Window Approach for New Drug/Target Assessment in Early Breast Cancer – What This Model Is and What It’s Not

- Can use small number patients since endpoint is biomarker modulation only - NOT an efficacy trial
- Short time window, not standard neoadjuvant duration
- Thus, can justify new agents alone, since definitive surgery and standard adjuvant recommendations will follow shortly
- Challenges for patient acceptance (extra biopsies, short delay in surgery)
- Requires multidisciplinary buy-in prior to a standard surgical approach

Targeting Critical Cancer Cell Survival Pathways to Overcome Resistance to Standard Endocrine Treatment

- Breast tumor initiating cells (breast cancer stem cells) use Notch receptors/ligands with other pathways for self renewal, resulting in tumor proliferation and progression
- We showed that Notch inhibition with novel compounds - gamma secretase inhibitors (GSI) - potentiates the effects of tamoxifen in xenografts (Rizzo et al. Cancer Research, 2008)
- It is unknown whether GSI plus endocrine therapy result in modulation of Notch and other proliferation markers in human breast cancer
- The “presurgical window setting” is an ideal model to test this hypothesis

Working Hypothesis
Endocrine Therapy + Gamma Secretase Inhibitor - A potential anti-tumor initiating cell effect and a role in overcoming endocrine resistance

Integrating New Agents with Standard, Curative-Intent Therapy in Early Breast Cancer

Conclusions

- We have come a long way with standard chemotherapy and endocrine therapy in phase III adjuvant clinical trial design, improving breast cancer mortality
- Biomarker correlative translational studies yielded refinement in who can avoid chemotherapy
- Neoadjuvant therapy designs need to select for relevant biology if they are to yield strategies that increase cures
- Early excitement with dual HER2 blockade
- The presurgical window model can be used to determine which new targeted therapies merit more expanded neoadjuvant trials