Targeting Inflammation in Breast Cancer Pathogenesis

Clifford Hudis, M.D.
Chief, Breast Cancer Medicine Service
Attending Physician, MSKCC
Professor of Medicine, Weill Cornell Medical College

August 7, 2011

Risk Factors for Breast Cancer
• Gender
• Age
• Race
• Diet high in fat
• Early onset of menses and late menopause
• Late or no pregnancies
• Family history (BRCA1, BRCA2)
• Dense breast tissue
• Alcohol consumption
• Hormone supplementation

Obesity and Breast Cancer
• Risk factor for development of hormone receptor-positive breast cancer in postmenopausal women.
• Poor prognostic factor for breast cancer patients regardless of menopause or hormone receptor status.
• Altered levels of hormones (estrogen, insulin, IGF-1), adipokines (leptin, adiponectin) and pro-inflammatory mediators (TNFα, IL-1β, PG) contribute to obesity-related breast carcinogenesis.

Obesity, Estrogen and Increased Risk of Postmenopausal Breast Cancer
• After menopause, peripheral aromatization of androgen precursors in adipose tissue yields estrogen.
• Increased risk of ER/PR-positive breast cancer in obese postmenopausal women has been attributed, in part, to elevated levels of circulating estradiol.
• Obesity causes inflammation in visceral and subcutaneous fat. Inflammatory mediators induce aromatase, the rate-limiting enzyme for estrogen biosynthesis.
• Direct link between obesity → breast inflammation → aromatase expression was previously unknown.

Obesity Causes An Inflammatory State

Hypothesis

Obesity induced inflammation will be a/w increased levels of pro-inflammatory mediators (COX-2, TNF-α, IL-1β) leading, in turn, to elevated aromatase expression in breast tissue and visceral fat.

Objectives

• To investigate whether the obesity→inflammation→aromatase axis is deregulated in the mammary gland and visceral fat in mouse models of obesity.

• To elucidate the signal transduction pathway that mediates the increased levels of aromatase in obesity.

• To determine whether obesity is associated with inflammation in the human breast.

Diet Induced Obesity: Experimental Design

C57BL/6J mice (n=40)

4 wks of age (n=20, OVX)

5 wks of age, begin 10-wk treatment with LF [10 kcal%] or HF [60 kcal%] diets

Diet Induced Obesity Causes Focal Inflammation in the Mammary Gland and Visceral Fat

Diet Induced Obesity is Associated with Increased Levels of Pro-inflammatory Mediators

Levels of Aromatase are Increased in Diet Induced Obesity
Obesity Causes Inflammation and Increased Aromatase Levels in the Mammary Gland and Visceral Fat of ob/ob (Leptin Deficient) Mice

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Wt/mouse</th>
<th>ob/ob</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory score</td>
<td>0.0 (0.2)</td>
<td>138 (6.2, 284)</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Relative TNF-α expression</td>
<td>0.0 (0.4, 1)</td>
<td>4.9 (1.7-9.7)</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Relative IL-1β expression</td>
<td>1.8 (0.4, 2.3)</td>
<td>29 (3.8, 97.3)</td>
<td>P < 0.02</td>
</tr>
<tr>
<td>Relative Cox-2 expression</td>
<td>1.8 (0.4, 2.3)</td>
<td>38 (12.5, 76)</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Relative aromatase expression</td>
<td>1.2 (0.2, 5.1)</td>
<td>6.1 (3.4, 76)</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Aromatase activity</td>
<td>6.5 (0.12, 210)</td>
<td>15 (1.0, 570)</td>
<td>P < 0.001</td>
</tr>
</tbody>
</table>

Diet Induced Obesity Leads to Elevated Levels of Pro-Inflammatory Mediators in the Stromal Vascular Fraction of the Mammary Gland

How Does Obesity Increase Aromatase Levels?

- Lipolysis is increased in obesity.
- Saturated fatty acids released by adipocytes activate the TLR4→NF-κB pathway in macrophages inducing pro-inflammatory mediators: including TNF-α, IL1-β and Cox-2.
- Question: Could saturated fatty acid-mediated induction of pro-inflammatory mediators in macrophages induce aromatase in other cell types via a paracrine mechanism?

Saturated FA-mediated Induction of Pro-inflammatory Mediators in Macrophages Induce Aromatase in Adipocytes

Diet Induced Obesity Causes Elevated Levels of Aromatase and Estrogen-Inducible Target Genes in Adipocytes

Conclusions: Mouse Model

- Obesity caused inflammation in the mammary glands and visceral fat in mice.
- Increased levels of pro-inflammatory mediators (TNF-α, IL1-β, Cox-2), known inducers of aromatase, were found in the stromal vascular fraction (contains macrophages, endothelial cells, fibroblasts) of the mammary gland which includes macrophages.
- Increased aromatase levels in both the SVF and adipocyte fractions of the mammary gland suggests a paracrine mechanism involving cross-talk between activated macrophages and other cell types.
Next Steps - CSL-B in Humans

- In obesity, activation of the TLR4→NF-κB pathway in macrophages is likely to be responsible for increased production of pro-inflammatory mediators leading, in turn, to elevated aromatase expression and estrogen synthesis.
- Hypothesis: Inflammation (CLS-B) occurs in the breast tissue of most overweight/obese women.

Study Design

- Normal breast white adipose tissue was obtained from 30 women who underwent surgery.
- Routine H&E staining and CD68 IHC was performed.

Crown-Like Structures are Common in the Breasts of Overweight and Obese Women

Crown-Like Structures Noted

MSKCC 10-040: Prospective Tissue Acquisition

Severity of Breast Inflammation Correlates with increased BMI
Conclusions

- Inflammation (CLS-B) occurs in the breast tissue of most overweight and obese women.

- In both obese women and experimental models of obesity, breast inflammation was paralleled by elevated levels of pro-inflammatory mediators (TNF-α, IL-1β, COX-2, PGE₂).

- In obesity, activation of the TLR4 → NF-κB pathway in macrophages is likely to be responsible for increased production of pro-inflammatory mediators leading, in turn, to elevated aromatase expression and estrogen synthesis.

Next Steps

- Further exploration of the obesity → inflammation → aromatase axis to explain the link between obesity and the increased risk of HR-positive breast cancer in postmenopausal women.

- Development of CLS-B as a biomarker of breast cancer risk or poor prognosis.

- Interventions (lifestyle, diet, pharmacological) that disrupt the obesity → inflammation axis may be useful for reducing the risk of breast cancer.