Tomoynthesis “3-D” Mammography: Do You Need It In Your Practice?

Christina T. Giuliano, MD
Director, Breast Imaging
Maimonides Breast Center
Brooklyn, NY
Background

Screening mammography has been shown to be the only imaging modality to lower breast cancer mortality \(^{31,32,33}\)

But...we know it’s not perfect
The Problem

• Mammography is a 2 dimensional exam, so in a dense breast, a cancer of similar attenuation can be obscured by normal surrounding fibroglandular elements, decreasing sensitivity.

• Similarly, adjacent normal structures or dense asymmetric areas are sometimes superimposed and questioned to be abnormalities, leading to additional work-up and increase in false positives, decreasing specificity.

• These factors are in part responsible for the differences in sensitivity and specificity in mammography depending on breast density.
 • sensitivity of 87% and specificity of 97% in women with fatty breasts
 • sensitivity of 63% and specificity of 89% in women with dense breasts.
Background

• Technology has helped us improve our detection;
 - xeromammography
 - film-screen mammography
 - digital mammography

• DMIST trial : Pisano et al. NEJM 42 digital mammography demonstrated improvement in cancer detection in patients with:
 - dense breasts
 - pre/perimenopausal
 - age less than 50

......however we still miss cancers in the dense breasts
Is There Anything Else We Can Do?

- **Digital Breast Tomosynthesis (DBT)** ...is a derivative of full-field digital mammography (FFDM) that improves the detection and characterization of breast lesions by reducing the problem of overlapping tissue 3,4

- First described for breast imaging in 1997 by Niklason 7
What is Tomosynthesis?

- Tomosynthesis utilizes x-rays to acquire cross-sectional images or “slices” of breast tissue.

- A series of multiple low-dose projection images are acquired as the x-ray tube is rotated through an angled arc around the compressed breast. These projections are processed by a reconstructive algorithm to generate 1mm thick slices which can be viewed as sequential sections of the breast, which are interpreted clinically.\(^3,4,7,41\)

- DBT primarily has two large effects in the clinical setting: reduction in the rate of false positive recalls and increase in cancer detection rates.\(^{22,36,37,38}\)

- Studies of DBT have determined that it is as accurate as standard two-view FFDM in the diagnosis or triage of breast abnormalities.\(^5\).
Technical Aspects

• Tomosynthesis projections are obtained at the same time as the standard two-view digital mammogram. The patient remains in the same compression.

• The number of images obtained varies depending on the thickness of the compressed breast4,5.

• The total scan time for DBT is about 4 seconds per breast6 adding an additional scan time to the 6 seconds for the traditional two-view FFDM - total 10 sec.

1 – X-ray tube; 2 – compression paddle; 3 – breast platform; 4 – Selenium image receptor; 5 – FFDM gantry
• FDA approved tomosynthesis for use in the United States using 2D + 3D (CC and MLO views) in February of 2011

• Currently Hologic Dimensions is the only approved unit in United States

• Other Systems: GE Essential, IMS Giotto TOMO, Philips MicroDose, Planmed Nuance Excel DBT, Siemens MAMMOMAT Inspiration

• FDA requirement: Need initial 8 hour training for MD’s and technologists
Concerns and Limitations

- Increased Radiation dose with traditional DBT is a concern for patients and physicians

 The radiation dose ranges from 1-2 X the dose of a regular 2 view mammogram13,14

 Two-dimensional (2D) synthesized images from DBT may eventually replace digital mammograms resulting in radiation doses equivalent to current mammography11,12,35

- Thin cross sectional slices obtained during DBT make perception of microcalcification distribution (ie: cluster) difficult to appreciate1,16

 DBT does allow for assessment of microcalcification morphology30
Concerns and Limitations

- DBT is not proven to offer any benefits over current diagnostic tools such as combined digital mammography and ultrasound\(^\text{18}\)

- Increased time to interpret over digital mammography\(^\text{19}\)
 - Studies have shown that DBT can take twice as long to interpret as digital mammography\(^\text{20}\)
Tomosynthesis Limitations

• Expensive, currently no reimbursement code (code “G”)

• IT requirement: Large files, data set depends on breast size (if breast compresses to 55mm, then 1/55 slices. Tomo can add 160-320 more images to your data set. On average need 10X storage /patient. If standard 4 view is 20MB, 2D+3D is 200MB often

• False negative – Need long term data
Clinical Uses

• DBT is most effective when used as part of the screening exam.
 • When used as a screening tool in conjunction with digital mammography or synthetic 2D views, recall rates have been shown to be significantly reduced from 11.9% to 4.9%, 8.7% to 5.5% and 12% to 8.4% in multiple different studies5,10,11,22.
 • The addition of DBT increases screening sensitivity by increasing cancer detection rates, especially invasive cancers, by as much as 30\%3,5.

• As a diagnostic tool DBT results in:
 • Improvement in mass characterization and size assessment3.
 • Increased accuracy in classification of lesions as malignant or benign when used in conjunction with digital mammography12.
 • The increased sensitivity of DBT may allow for more accurate assessment of the extent of disease (multifocal and multicentric disease).
Synthesized Mammography

- Has preliminary FDA panel approval May 2013

- Perform tomosynthesis scan only and synthesize the 2-D images from a reconstruction algorithm, called the “C-view”. This would look similar to standard 2D images and serve as an overview, or roadmap to the 3D data set. Need 2D to see asymmetry, compare with priors, assess microcalcifications

- This would eliminate the additional radiation from the standard 2D images, making the total comparable to current 2D imaging but still maintain the benefit of 3D

- Preliminary data; Skaane RSNA 2013
Current Literature

- Early studies - Small numbers of cases, mostly observer performance studies (Poplack SP, et al., Gur D, et al)

- 5 sites: MGH, Dartmouth, Iowa, McGee Women’s, Yale
- 12 readers; rad 2D and a different time 2D+tomo
- Conclusion; with the addition of 3D to 2D, diagnostic accuracy improved (7.2% and 6.8% gain) and diagnostic sensitivity improved (10.7% and 16%)
- Recall rates decreased for every reader (38.6%)
Current Literature

• Observational study of the Initial experience in clinical practice in US (Houston)
• Rose SL, et al. Implementation of breast tomosynthesis in a routine screening practice. AJR, June 2013. 10
• 13,856 screening mammo, 9499 with tomosynthesis
• Significant decrease in recall rate from 8.7% to 5.5% (37%)
• Significant increase in cancer detection rate from 4.0 to 5.4/1000 (35%)
• Increase in invasive cancer from 2.8 to 4.3/1000 (54%)

• Haas B et al. 46 Radiology Dec 2013, 13,158 mammo , 6100 with tomo
• Significant decrease recall rate from 12% to 8.4% (29.7%),
• Significant for all densities except fatty, all ages except >70 with greatest reduction were in dense breasts and patients < 50 y.o.
• Increase in cancer detection rate 5.2 to 5.7/1000 (9.5%) not significant
Oslo Tomosynthesis Screening Trial

- OTST Largest prospective study to date, Oslo Norway
- Single institution, 12,621 eligible subjects. Compared standard 2 view 2D with 2D+2 view DBT on commercially available Hologic unit (not a prototype)
- 25 additional invasive cancers were detected using 2D+3D (increase of 40%). No increase in detection of DCIS
- Results: 27% increase in cancer detection rate (invasive carcinoma)
- 15% decrease in recall rate
- Interpretation time was doubled using 2D+3D
STORM

- Italian based trial in Trento and Verona, prospective, non-randomized study comparing conventional 4 view mammography with combined digital mammography and tomosynthesis Ciatto S, et al. 38
- Screening with Tomosynthesis or Standard Mammography (STORM) 7292 women
- Early results reported at Eur Congress of Radiology 2012 and Lancet 2013
- DBT Detected 8.1 cancers/1000 screens, compared with 5.3 /1000 screens with 2D only, Incremental cancer detection rate attributable to 2D + 3D was 2.7 cancers/1000 screens an increase in over 50%
- Recall rate decreased by 17.2%
Ongoing Trials

- OSLO Tomosynthesis Screening Trial – Norway 18,000 women
- STORM – Italy
- Malmö Breast Tomosynthesis Screening Trial (MBTST) ongoing: Principal Investigators: Sophia Zackrisson MD Phd, Ingvar Andersson MD, will accrue 15,000 women, started 2010, due for completion 2014
- UK trial, TOMosynthesis with Digital Mammography (TOMMY) will include 7,000 women recalled after a positive screen
- TMIST – United States
- Need more data, need long term F/U to these trials to see that we are not missing cancers as well
Tomosynthesis: Diagnostic Use

- Can determine if true mass vs. asymmetry \(^{26,27}\)

- Characterize the borders/margins of the mass therefore better able to distinguish benign findings from malignant findings, more accurate size as well as localize the mass and go directly to US \(^{26,27}\).

- more readily reveals architectural distortions.

- DBT similar to mammo spot compression view, may decrease number of diagnostic images and streamline diagnostic work-up \(^{40}\).

- Calcifications continue to be an area where FFDM outperforms DBT, although one study demonstrated that the difference in visibility was not statistically significant \(^{17}\).
Cost Effectiveness

- Viviek Kalra, et al. RSNA 2012

- Immediate Direct cost savings - avoid recall for unilateral, bilateral mammo or US

- Decreased recall rate from 10.9% with FFDM to 7.0% with combined DBT resulted in statistically significant decreased number of immediate diagnostic studies: unilateral mammo 9.6% vs. 5.8%, bilateral mammo 1.0% vs. 0.1%, ultrasound 7.7% vs. 5.5%.

- Using regional Medicare reimbursement rates the decrease resulted in a direct cost savings of $10,185 per 1000 women screened with combined DBT (Yale study)

- Intangible cost- patient anxiety and stress following a false + callback or pain/suffering from a biopsy

- Indirect cost savings- transportation costs, work days lost, Insurance paperwork, facility costs, rescheduling costs
DBT Biopsy

• Tomosynthesis Biopsy device now available as an add-on device

• Currently at Magee Women’s, just over 100 patients performed by Dr. Zuley and Dr. Sumkin (not published)
Summary

• The increased sensitivity and reduction in call back rates are two of the most important ways that the addition of tomosynthesis to a screening protocol benefits patients.
 • Reduction in recall rates may decrease the unnecessary stress patients must undergo.
 • Reduction in recall rates may decrease health care costs.

• Tomosynthesis is often used as an additional diagnostic tool to further characterize lesions seen on 2D digital mammography, however, its greatest impact seems to be when it is utilized in a screening population.

• There is currently no data to suggest that tomosynthesis can be used without 2D digital mammography; as improvements in DBT technology continue, the future may allow for replacement of 2D digital mammography by synthesized 2D tomosynthesis images21,29,35.

• The additional cancers detected by DBT are often significant. The majority of additional cancers detected by DBT were invasive, node-negative cancers21.

• DBT limitations include:
 • No proven lesion detection benefits over combined digital mammography and ultrasound.
 • Slightly increased radiation dose to patient.
 • 2D digital mammography has a greater capacity to assess microcalcifications.
As always, with any new therapy or technology we have to be sure we are not doing more harm.

So to answer the question.....

Tomosynthesis “3-D” Mammography: Do You Need It In Your Practice?

..........you probably will!
References

44. Copeland J, Doshi N, Hanna I, Levy L, Giuliani C, MD The Role of Tomosynthesis in Everyday Clinical Breast Imaging, Scientific Presentation (Certificate of Merit) RSNA 2013

45. Philpotts L (abstract) Breast Imaging: screening/emerging technologies (Initial experience with digital breast tomosynthesis in screening mammography). AJR 2012; 198 (Supplement)