Strategies to Overcome Resistance to Trastuzumab

Mark Pegram, M.D.
Susy Yuan-Huey Hung Professor of Oncology
Director, Stanford Breast Oncology Program
Co-Director, Molecular Therapeutics Program
Previously postulated mechanisms of resistance

- Shedding of ERBB2
 (Scalitriti et al, J Nat Cancer Inst, 2007)

- Hyperactivation of PI3K/Akt by loss of PTEN and PIK3CA mutation
 (Eichhorn et al, Cancer Res, 2009)

- Overexpression of MUC4 causing steric hindrance of trastuzumab binding
 (Nagy et al. Cancer Res. 2005)

- Increase in p-ERBB3
 (Sergina et al, Nature, 2007)

- Cyclin E amplification/overexpression
 (Scaltriti et al. PNAS 2011)

- Activation of EPO receptor by rHuEPO
 (Liang et al. Cancer Cell 2010)

- Expression of ER
 (Xia et al, PNAS, 2006)

- Upregulation of IGF-IR receptor
 (Gail Phillips, AACR, 2009)

- Activation of AXL
 (Liu et al, Cancer Res, 2009)

- Upregulation of MET receptor
 (Shattuck et al, Cancer Res, 2008)
Neoadjuvant pertuzumab (P) and trastuzumab (H): Biomarker analyses of a 4-arm randomized Phase II study (NeoSphere) in patients (pts) with HER2-positive breast cancer (BC)

L Gianni, G Bianchini, A Kiermaier, G Bianchi, Y.-H Im, T Pienkowski, L Roman, M-C Liu, L-M Tseng, J Ratnayake, T Szado, G Ross, P Valagussa

on behalf of the ‘NeoSphere’ study investigators
NeoSphere: Study design and objectives

- Phase II design
- Primary endpoint: Comparison of pCR rates
 - TH vs THP
 - TH vs HP
 - THP vs TP
- Secondary endpoints:
 - Clinical response
 - DFS
 - Breast conservation rate
 - Biomarker evaluation

Patients with operable or locally advanced /inflammatory* HER2-positive BC

Chemo-naïve & primary tumors >2cm (N=417)

Study dosing: q3w x 4

TH (n=107)
- docetaxel (75→100 mg/m²)
- trastuzumab (8→6 mg/kg)

THP (n=107)
- docetaxel (75→100 mg/m²)
- trastuzumab (8→6 mg/kg)
- pertuzumab (840→420 mg)

HP (n=107)
- trastuzumab (8→6 mg/kg)
- pertuzumab (840→420 mg)

TP (n=96)
- docetaxel (75→100 mg/m²)
- pertuzumab (840→420 mg)

NeoSphere: Primary endpoint – pathologic complete response (ITT population)

H, trastuzumab; P, pertuzumab; T, docetaxel

* p values from Cochran-Mantel-Haenszel test and adjusted for multiplicity

The HER2 signalling pathway
Selection of biomarkers

HER1, HER2, HER3, IGF1R

p95HER2

ER

PTEN
mTOR

p27
Cyclin D1, E

Nucleus

HER ligands

NK cell

FcGR

HER2

Raf

Sos
Shc

Grb2

Grb2

PI3K

Akt

GSK3
BAD

Cell survival

Cell-cycle progression

Nucleus

c-myc

Cell proliferation

mTOR

Ras

MEK 1/2

MAPK

San Antonio Breast Cancer Symposium – Cancer Therapy and Research Center at UT Health Science Center – December 6–10, 2011

Copyrights for this presentation are held by the author/presenter. Contact them at gianni.luca@hsr.it for permission to reprint and/or distribute.
Biomarker analyses on overall population

<table>
<thead>
<tr>
<th>Assay method</th>
<th>Biomarker</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHC</td>
<td>HER2 mem H-score</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>HER3 mem H-score</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>IGF1R mem H-score</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>PTEN cyt H-score</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>PTEN nuc H-score</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>pAKT cyt H-score</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>pAKT nuc H-score</td>
<td>299</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>HER2/HER3-CR</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>HER3-CR</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>HER2-CR</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>EGFR-CR</td>
<td>377</td>
</tr>
<tr>
<td>FISH</td>
<td>c-myc</td>
<td>275</td>
</tr>
<tr>
<td>ELISA (serum)</td>
<td>sHER2 (ng/mL)</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>Amphiregulin (pg/mL)</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>TGF-alpha (pg/mL)</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>EGF (pg/mL)</td>
<td>384</td>
</tr>
<tr>
<td>Mutational analyses</td>
<td>PI3K mutation</td>
<td>273</td>
</tr>
</tbody>
</table>
Biomarker analyses on overall population

<table>
<thead>
<tr>
<th>Assay method</th>
<th>Biomarker</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHC</td>
<td>HER2 mem H-score</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>HER3 mem H-score</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>IGF1R mem H-score</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>PTEN cyt H-score</td>
<td>373</td>
</tr>
<tr>
<td>FISH</td>
<td>c-myc</td>
<td>275</td>
</tr>
<tr>
<td>ELISA (serum)</td>
<td>sHER2 (ng/mL)</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>Amphiregulin (pg/mL)</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>TGF-alpha (pg/mL)</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td>EGF (pg/mL)</td>
<td>384</td>
</tr>
<tr>
<td>Mutational analyses</td>
<td>PI3K mutation</td>
<td>273</td>
</tr>
</tbody>
</table>

The cut-off for analyses of correlation with treatment and sensitivity was defined as the median for each biomarker [except for c-myc (ratio ≥ 2.0) and PI3K status (WT versus Mut)].
HER2 membrane H-score linked to pertuzumab effects

The cut-off associated with prediction of response upon addition of pertuzumab [THP regimen] is not a clinically meaningful discriminator.

H, trastuzumab; P, pertuzumab; T, docetaxel (study dosing: q3w x 4 cycles)
Determination of fragments of HER2: The HER2 ECD/ICD ratio

Chromogenic double staining of HER2 ICD (Ventana 4B5) and ECD (Roche proprietary monoclonal antibody F2)

Single stainings “pure” spectra

ECD/ICD ratio <1 indicates presence of truncated forms of HER2

Copyrights for this presentation are held by the author/presenter. Contact them at gianni.luca@hsr.it for permission to reprint and/or distribute.
Analysis of fragments of HER2 per HER2 ECD/ICD ratio: No association with efficacy

H, trastuzumab; P, pertuzumab; T, docetaxel (study dosing: q3w x 4 cycles)
Results of PI3K mutational analyses per exon in pooled arms

<table>
<thead>
<tr>
<th>Mutation</th>
<th>non-pCR</th>
<th>pCR</th>
<th>pCR/non-pCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 7</td>
<td>4</td>
<td>0</td>
<td>0/4</td>
</tr>
<tr>
<td>Exon 9</td>
<td>26</td>
<td>2</td>
<td>2/28 (7.1%)</td>
</tr>
<tr>
<td>Exon 20</td>
<td>47</td>
<td>19</td>
<td>19/66 (28.7%)</td>
</tr>
</tbody>
</table>

Exon 9 mutation: of 28 mutation detected in the 4 arms, 26 were in cases who did not achieve a pCR
Hormone receptor status and pCR in NeoSphere

ER, estrogen receptor; PR, progesterone receptor
H, trastuzumab; P, pertuzumab; T, docetaxel (study dosing: q3w x 4 cycles)

OS According to Subgroups

ACTH vs. ACT (reference group)

<table>
<thead>
<tr>
<th>Factor</th>
<th>No. of Events</th>
<th>ACT</th>
<th>ACTH</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><40 years</td>
<td>654</td>
<td>65</td>
<td>45</td>
<td>0.67</td>
</tr>
<tr>
<td>40-49</td>
<td>1373</td>
<td>121</td>
<td>87</td>
<td>0.65</td>
</tr>
<tr>
<td>50-59</td>
<td>1336</td>
<td>129</td>
<td>90</td>
<td>0.68</td>
</tr>
<tr>
<td>60+ years</td>
<td>683</td>
<td>103</td>
<td>64</td>
<td>0.51</td>
</tr>
<tr>
<td>Hormone Receptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER- and PR-</td>
<td>1828</td>
<td>212</td>
<td>149</td>
<td>0.65</td>
</tr>
<tr>
<td>ER+ or PR+</td>
<td>2215</td>
<td>206</td>
<td>137</td>
<td>0.61</td>
</tr>
<tr>
<td>Tumor Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2cm</td>
<td>1598</td>
<td>129</td>
<td>67</td>
<td>0.51</td>
</tr>
<tr>
<td>2.1-5.0cm</td>
<td>2096</td>
<td>239</td>
<td>176</td>
<td>0.68</td>
</tr>
<tr>
<td>5.1cm+</td>
<td>345</td>
<td>50</td>
<td>42</td>
<td>0.58</td>
</tr>
<tr>
<td>Nodal Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LN 0</td>
<td>282</td>
<td>11</td>
<td>9</td>
<td>0.94</td>
</tr>
<tr>
<td>LN 1-3</td>
<td>2144</td>
<td>161</td>
<td>104</td>
<td>0.59</td>
</tr>
<tr>
<td>LN 4-9</td>
<td>1084</td>
<td>133</td>
<td>103</td>
<td>0.72</td>
</tr>
<tr>
<td>LN 10+</td>
<td>536</td>
<td>113</td>
<td>70</td>
<td>0.56</td>
</tr>
<tr>
<td>Histologic Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>76</td>
<td>8</td>
<td>1</td>
<td>0.11</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1123</td>
<td>108</td>
<td>59</td>
<td>0.52</td>
</tr>
<tr>
<td>Poor</td>
<td>2801</td>
<td>299</td>
<td>219</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Romond, et al., SABCS 2012
Conclusions from NeoSphere biomarker analyses

- HER2 expression (H-score) associated with sensitivity to pertuzumab
- PI3K mutations in exon 9 linked to lack of sensitivity to HER2-directed MAb’s
- Intrinsic differences between HER2+ tumors based on hormone receptor status
- No predictive role for truncated forms of the HER2 receptor including p95\(^{\text{HER2}}\)
- So far none of the analyses provided clinically useful assays for patient and/or regimen selection in addition or alternative to the conventional assessment of HER2 by IHC or FISH
Candidate markers
(8 year DFS NSABP B-31)
The trastuzumab HER2 Complex Is a Potent Mediator of ADCC

FcγRIIIa - 158V/F Polymorphism (RFLP Analysis)

Fc γRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc γRIIIa, independently of the Fc γRIIIa-48L/R/H phenotype. Koene, et al.
Fig 2. Progression-free survival (PFS) by immunoglobulin G (IgG) fragment C receptor IIIa (Fc(\gamma)RIIIa) 158 valine (V)/phenylalanine (F) and Fc(\gamma)RIIa 131 histidine (H)/arginine (R) polymorphisms

Fc-Engineered Antibodies Maximize Effector Cell Activity

Retain Anti-Proliferative Effects of Trastuzumab

Superior Engagement of Immune Effector Cells

Significantly Improved Cell Killing
MGAH22 Significantly Outperforms Trastuzumab

Activity in Resistant Breast Cancer Lines (JIMT-1, Her2 2+)

No Response with Wild Type mAb (Trastuzumab)

MGAH22 Controls Tumor Growth

* First time when tumor size is significantly less than control (P<0.05)
First time when tumor size is significantly less for MGAH22 than RES120 (P<0.05)

Note: these models incorporate MacroGenics’ proprietary transgenic models: mCD16-/ hCD16A+ Mice
Genetic landscape of gene re-arrangements, gene copy number changes and SNVs in lapatinib sensitive and resistant SKBR3 cells

Acknowledgements

Europe
Mario Bari – Ospedale di Mirano, Venice, Italy.
Claudio Zamagni – Azienda Ospedaliero-Università di Bologna, Bologna, Italy.
Mauro Mansutti – Azi. Ospedaliero-Università di Udine, Udine, Italy.
Luca Gianni – Istituto Nazionale dei Tumori, Milano, Italy.
Paola Morandi – Azienda Ospedaliera San Bortolo, Vicenza, Italy.
Eugenio Villa – Ospedale S. Raffaele, Milano, Italy.
Sergio Fava – Ospedale Civile di Legnano, Milano, Italy.
Piotr Tomczak – Oddzial Chemioterapii U.M., Poznań, Poland
Anna Lowczak – Olsztyński Osrøde Onkologiczny, Olsztyn, Poland
Elzieta Staroslawska – Oddzial I Chemioterapii Onkologicznej, Lublin, Poland.
Vladimir Vladimirov – Stavropol Regional Clinical Oncology Dispensary, Russia.
Serhi Tjulandin – Russian Oncological Research Center n.a., Moscow, Russia.
Mikhail Byakkov – Central Clinical Hospital #2 N.A.Semashko, Moscow, Russia.
Mikhail Kopp – Samara Region Clinical Oncologic Dispensary, Russia
Lillya Ahmadullina – Russia.Municipal Institution of HealthCare, Kazan, Russia
Laslo Roman – Russia Leningrad Regionl Oncology Dispensary,Russia
Eugenii Kulikov – 13 Regional Clinical Oncology Dispensary, Ryazan, Russia
Vladimir Semiglavlov - Research Oncology Inst N.A. prof N.N.Petrov, Petersburg, Russia
Dmitrij Udvicov – Kradsnor region, Russia.
Enrique Aranda – Hospital Reina Sofia, Cordoba, Spain.
Noelia Martinez Janez – Hospital Ramon Y Cajal, Madrid, Spain.
Antonio Anton – Hospital Miguel Servet, Zaragoza, Spain.
Ana Lluch Hernandez – Hospital Clínico Universitario de Valencia, Valencia, Spain.
Miguel Martin – Hospital Gregorio Maranon, Madrid, Spain.
Pilar Zamora – Hospital Universitario La Paz, Madrid, Spain.
Miguel Angel Segui – Corporació Parc Taulí, Barcelona, Spain.
Guillermo Lopez-Vivancos – Hospital De Cruces, Baracaldo Vizcaya, Spain.
Jeffery Yachnin – Uppsala, Academic University Hospital, Sweden
Thomas Hatschek – Karolinska University Hospital Sweden
Nik Hauser – Kantonsspital Baden, Switzerland
Andreas Trojan – Brustzentrum, Zurich, Switzerland
Andrew Wardley – Christie Hospital, Manchester, UK
Chris Poole – University Hospital Coventry and Warwickshire Walsgrave Hospital, UK

Asia
Arlene Chan – ALCC, Australia
Seock Ah Im – Seoul National University Hospital, Seoul, Republic of Korea.
Young-Hyuck Im – Samsung Medical Center, Seoul, Republic of Korea.
Chiun-Sheng Huang – National Taiwan University Hospital, Taiwan
Ling Ming Tseng – Taipei Veterans General Hospital, Taiwan
Mei-Ching Liu – Koo Foundation Sun Yat-Sen Cancer Center, Taiwan
Virote Sriuranpong – King Chulalongkorn Memorial Hospital, Bangkok, Thailand
Vichien Srimuninnimit – Siriraj Hospital, Bangkok, Thailand
Patrapim Sunpaweravong – Prince of Songkla University Hospital, Thailand

North and South Americas
Arlene Chan – ALCC, Australia
Seock Ah Im – Seoul National University Hospital, Seoul, Republic of Korea.
Young-Hyuck Im – Samsung Medical Center, Seoul, Republic of Korea.
Chiun-Sheng Huang – National Taiwan University Hospital, Taiwan
Ling Ming Tseng – Taipei Veterans General Hospital, Taiwan
Mei-Ching Liu – Koo Foundation Sun Yat-Sen Cancer Center, Taiwan
Virote Sriuranpong – King Chulalongkorn Memorial Hospital, Bangkok, Thailand
Vichien Srimuninnimit – Siriraj Hospital, Bangkok, Thailand
Patrapim Sunpaweravong – Prince of Songkla University Hospital, Thailand

Central laboratories
TARGOS Molecular Pathology GmbH
Roche TRS DNA lab
Roche protein lab
Roche TRS DNA lab

Michelangelo Foundation
Roche Product Development
2 flavors of FcγR influence ADCC

- **FcγRIIIa (activating)** - activates ADCC effector cells
 - immunoreceptor tyrosine activation motif (ITAM)

- **FcγRIIb (inhibitory)** - abrogates effector cell activity
 - immunoreceptor tyrosine-based inhibitory motif (ITIM)