The Challenge and Promise of the Genomic Era

George W. Sledge, Jr. MD
Stanford University
The Genomic Era
The $1000 Genome is Almost Here
Stupid and Smart Cancers

Stupid Cancers
- Single dominant mutation
- Small mutational load
- Monotherapy is effective
- Resistance rare, late, same pathway

Smart Cancers
- Multiple mutational drivers
- Large mutational load
- Multi-targeted therapy required
- Resistance common, early
Somatic point mutations: varying rates across cancer (1035 WES)
Breast Cancer: Subtypes Reflect Genomic Complexity

Genome-wide Circos plots of somatic rearrangements

Smart Cancers

- Smart cancers are genomically complex
- Etiology affects complexity
- Complexity affects drug sensitivity
- Complexity \rightarrow tumor heterogeneity
- Complexity evolves
- Darwinian pressures affect complexity
Table 1 | Analysis of the top somatically aberrated genes influencing expression

<table>
<thead>
<tr>
<th>Rank</th>
<th>Gene</th>
<th>gband</th>
<th>SNV or indel</th>
<th>SNV</th>
<th>HLA MP</th>
<th>HOMD</th>
<th>Events</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TP53</td>
<td>17p13.1</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>2242</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>PIK3CA</td>
<td>3q26.32</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>441</td>
<td>1 x 10^-4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NRAS</td>
<td>1p13.2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>271</td>
<td>4 x 10^-4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EGFR</td>
<td>7p11.2</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>220</td>
<td>4 x 10^-4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RB1</td>
<td>13q14.2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>184</td>
<td>5 x 10^-4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PGM2</td>
<td>4p14</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>172</td>
<td>5 x 10^-4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PRPS2</td>
<td>23p22.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>171</td>
<td>5 x 10^-4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PTEN</td>
<td>10q23.31</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>150</td>
<td>5 x 10^-4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>FRKCE</td>
<td>2p21</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>136</td>
<td>7 x 10^-4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NR3C1</td>
<td>5q31.3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>130</td>
<td>7 x 10^-4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>CREBBP</td>
<td>16p13.3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>119</td>
<td>8 x 10^-4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CS</td>
<td>12q13.2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>108</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>MAN2A2</td>
<td>15q26.1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>104</td>
<td>0.0013</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>HMGC52</td>
<td>1p12</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0.0013</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>HEXA</td>
<td>15q24.1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>97</td>
<td>0.0013</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ADCY9</td>
<td>16p13.3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>91</td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>OR4N4</td>
<td>15q11.2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>90</td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>LCLAT1</td>
<td>2p23.1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>85</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>DGK1</td>
<td>7q33</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>CYP2A6</td>
<td>19q13.2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>JAK1</td>
<td>1p13.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>78</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>POLP1A</td>
<td>2p11.2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>78</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>PLD1</td>
<td>3q26.31</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>69</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>IDH3B</td>
<td>20p13</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>68</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>PAPSS2</td>
<td>10q23.2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>67</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>PKR1K</td>
<td>23p22.3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>65</td>
<td>0.0046</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>TPH2</td>
<td>12q21.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>65</td>
<td>0.0046</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>UGT2B17</td>
<td>4q13.2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>63</td>
<td>0.0053</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>RRM2</td>
<td>2p25.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>57</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>ATM</td>
<td>11q22.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>55</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>CLCA1</td>
<td>1p22.3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>PRKCCZ</td>
<td>1p36.33</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>0.0095</td>
<td></td>
</tr>
</tbody>
</table>

Somatic mutation content by case

Oncology as Whack-a-Mole

Rapid emergence of compensatory mechanisms of resistance
Genomic Chaos

• “Smart tumors” = genomic chaos
• This is a quantitative, not just a qualitative, problem
• They are not hard targets just because we haven’t found a single “magic bullet”
• We don’t need a magic bullet, we need a magic shotgun
Developing Targeted Therapies in the Genomic Era: Be Careful What You Ask For
Targeting Rare Mutations in the Genomic Era

• Example: HER2 mutations
 – Occur in <2% of breast cancer
 – IHC and FISH negative
 – Activating
 – Sensitive to RTKi but not trastuzumab
Targeting Rare Mutations in the Genomic Era

• 2% mutation rate, so...
• Screen 500 patients for a 10-patient pilot trial
• Trial now open to accrual
• It’s actually much worse than this
Number Needed to Study: HER2 Mutation

- NNS = \[\frac{1}{\text{(% biomarker-positive) \times \text{assay accuracy} \times \text{fraction trial-eligible} \times \text{fraction giving IC)}}}\]

Example:
HER2 = \[\frac{1}{(0.02 \times 0.9 \times 0.5 \times 0.8)}\]
\[= \sim 138 \text{ patients screened/patient studied}\]
The Mutational Landscape of Breast Cancer

- 100 breast cancers genomes analyzed
- Driver mutations found in at least 40 different cancer genes
- 73 different combinations of driver mutated cancer genes
- 28 cancers had a single driver mutation, but some had as many as 6 driver mutations
- WE HAVE NEVER TARGETED 6 DRIVERS!

Multi-Kinase Activation Requires Multi-Kinase Inhibition

Multiple kinases are activated

Optimal cell kill requires inhibition of multiple kinases

Stommel et al. SCIENCE VOL 318: 287, 2007
Today’s Clinical Trials System is Not Designed for Chaos

- Emphasizes single agents
- Combination trials never biomarker-based
- Biomarker development is secondary
- Regulatory apparatus ill-suited to modern biology
The “Next-Gen” Clinical Trials System

• Therapeutic individualization based on personal genomics
• Real-time bioinformatics
• HIT network supporting clinical trials and cancer care
• Increased collaboration
• Trial designs focused around multi-targeting
• Redesigned informed consent process
• Fundamentally different regulatory apparatus
• CAN STANFORD LEAD?
Thank You!